There may be more cost-efficient and less time-consuming methods than developing a prototype to generate the critical information needed to move a business forward.

Originally posted on Med Device Online

Written by Eric Sugalski, President of Smithwise 


Early stage medical device innovators and entrepreneurs often feel that the first critical step in their new venture is to build a prototype. Without a prototype, these visionaries rely on verbal descriptions and rough diagrams to help articulate both the medical problem and their proposed solutions. A functional prototype advances the conversation with key stakeholders and builds the value of the medical device concept and business opportunity.

The challenging part is that prototypes cost money, and designers at the idea stage usually are in short supply of financial resources. While widespread availability of 3D printing and other rapid fabrication methods has reduced the costs of fabrication, rarely is prototyping a matter of simply fabricating parts. Prototyping is an output of a product development process, which most often involves detailed design and engineering efforts. Trying to build a prototype without investing in competent engineering and design is like trying to build a house without skilled carpenters, plumbers, and electricians. Typically, investing in a development process that would result in a functional and reliable prototype is much more costly than bootstrapping entrepreneurs are able to endure.

Eventually, to advance a medical device business, there certainly needs to be a prototype to demonstrate functionality and to serve as a testing platform. However, there may be more cost-efficient and less time-consuming methods that can be deployed, at an early stage, to generate the critical information needed to move the business forward.

So, what then is this critical information that needs to be addressed at the idea stage? Most often, the focus is, “will it work?” While this is a critical question, it often is only a small part of the challenges facing early stage medical devices, and should be expanded to include:

  • Will it work within the economic constraints of customers and payors?
  • Will it work without infringing on existing intellectual property?
  • Will it work within a development timeline and budget that is acceptable by investors?
  • Will it work while meeting regulatory requirements for safety and efficacy?

Often, these other business risk factors (healthcare economics, intellectual property, regulatory affairs, etc.) are just as important — if not more so — than the product risk factor of functionality. Furthermore, addressing these business risk factors does not require designing, engineering, and prototyping. These factors can be addressed through secondary research and brief reviews with industry experts.

Before undertaking on any type of product development effort (including prototyping), these key risk factors should be thoroughly evaluated and documented. Even if these factors have been sufficiently addressed, and a prototype is the next logical step, it still is best to isolate the most critical product risks and target prototyping efforts on reducing them:

  • Technology risk — Are there critical operating parameters that enable the device to meet performance expectations?
  • User and customer risk — Will customers be inclined to adopt this new product and to incur the behavior changes that may be required for its use?
  • Manufacturing risk — Are there existing, available manufacturing processes and materials that enable this product to be produced with reliability and scale potential?

It is tempting for designers to attempt tackling all of these product risk factors (and more) in a single prototype build. But, the reality is that prototyping is a process of experimentation. Very rarely does any experienced product development team get it right the first time. For novel medical devices, the ideal product development process anticipates change and builds in methods for adapting to unforeseen circumstances. It is a process that generates rapid prototypes focused on specific questions, and then uses an iterative approach to identify the optimal solutions.

Below are some methods that can be used to target these individual risk factors:

Prototyping To Address Technology Risk:

When new functionality needs to be developed and evaluated, it often is better to build a focused subsystem breadboard or a testing fixture. This approach focuses exclusively on the technical area of concern and provides means for swapping critical components — such as motors, springs, and sensors — in and out. It enables rapid experimentation to take place in arriving at the conditions that will result in ideal performance.

However, a breadboard developed with the intent of swapping components and optimizing parameters may be far from the ideal product form factor. Breadboards often are large and lacking aesthetic appeal, since they need to account for an array of interchangeable components. Still, prototyping through a breadboarding approach can be an effective and efficient means of reducing technology risk.

Prototyping To Address User And Customer Risk:

When developing a product that may not currently exist in the marketplace, gaining user feedback early in the development process is a crucial step. Too often, product developers assume that customers and users will adopt the novel product based on its merits — a gamble that often results in costly redesigns late in the design and manufacturing process.

But, addressing customer and user perspective rarely requires the new product’s full functionality. Often, sharing with target users an array of non-functional use-case mockups can yield greater feedback than sharing a single functional prototype. Customers care about the product’s end benefits, not the technology that enables those benefits. Attempts to quickly develop a functional prototype for user evaluation typically create an unrefined (i.e., bulky, non-ergonomic) contraption that tells you things you already know. Evaluating customer perceptions and concerns can be much more effectively accomplished through use-case mockups that focus on the end benefits to users, as well as the varying trade-offs that may need to be considered.

Investor Demonstration

When functionality is needed purely for demonstration purposes, often the fastest route for achieving this demonstration is cannibalization and repurposing of an existing product that has similar functionality. For example, one might take the electronics (e.g., wireless chip, sensors, power source) from a commercially-available consumer product and package them within a custom enclosure that has mechanical elements sufficient to perform a basic demonstration of the product and the value proposition.

Often, animations and renderings can supplement these demonstration prototypes to provide the visuals necessary to more clearly articulate the longer-term product vision. Rarely does a prototype need to be fully customized and executed perfectly for an investor to understand the value proposition. While a prototype may be one of the key preparations required for an investor pitch, most savvy investors will be more concerned with the business risk factors (regulatory pathway, intellectual property, etc.).

Which brings us full-circle to the question, “Do you really need a prototype?” Stated simply, a better approach is to list the numerous risks facing your new venture, and then deploy a product development strategy that reduces those risks through the most efficient means possible. Prototyping certainly will be a part of this risk-reduction strategy, but prototyping should not be considered the strategy itself.

 Written by Eric Sugalski

Written by Eric Sugalski

Eric Sugalski is the founder and president of Archimedic, a contract medical device development firm with offices in Boston and Philadelphia. Sugalski has led the development of a novel pediatric life support system, cardiovascular implants, laparoscopic surgical devices, and an array of wearable diagnostics. In addition to his technical background, Eric provides companies with product development strategy that encompasses regulatory, reimbursement, and fundraising requirements. Eric obtained a B.S. in mechanical engineering from the University of Colorado Boulder and an MBA from the MIT Sloan School of Management.


Governor Wolf and his team from Harrisburg visited Smithwise at our Philadelphia location.  There is strong interest from the State in building innovative companies that will drive job growth for local communities. Governor Wolf recognized the work taking place at Smithwise and our local clients as being a vital part of the innovation ecosystem in Pennsylvania.

During Governor Wolf’s visit, we discussed Towerview Health’s medication management platform, ZSX Medical’s laparoscopic surgical device, and Active Protective’s wearable airbag hip protection system.

We look forward to continued support from Governor Wolf in expanding health technology in PA.

 Written by Eric Sugalski

Written by Eric Sugalski

Eric Sugalski is the founder and president of Archimedic, a contract medical device development firm with offices in Boston and Philadelphia. Sugalski has led the development of a novel pediatric life support system, cardiovascular implants, laparoscopic surgical devices, and an array of wearable diagnostics. In addition to his technical background, Eric provides companies with product development strategy that encompasses regulatory, reimbursement, and fundraising requirements. Eric obtained a B.S. in mechanical engineering from the University of Colorado Boulder and an MBA from the MIT Sloan School of Management.


“Being selected as an MDEA Finalist is a testament to the skill, dedication and innovation of the Smithwise team that developed the Towerview product in a six month period of time.” – Eric Sugalski, Smithwise CEO

Smithwise is pleased to announce that Towerview Health Medication Management System has been selected as a finalist in the Digital Health Products and Mobile Medical Apps Category of the 19th Annual Medical Design Excellence Awards competition. Finalists were officially announced in the May Issue of MD+DI (Medical Device and Diagnostic Industry) magazine. Winners will be announced at the 2017 MDEA Ceremony held Tuesday, June 13, 2017 in conjunction with UBM’s Medical Design & Manufacturing (MD&M) East event at the Jacob K. Javits Convention Center in New York. To learn more about the event, please visit:

As a Supplier to the Finalist, Smithwise provided mechanical engineering, electromechanical integration, optical engineering, industrial design implementation, design for manufacturability and assembly (DFMA) and supply chain development.

The MDEA is the medtech industry’s premier design competition committed to recognizing significant achievements in medical product design and engineering that improve the quality of healthcare delivery and accessibility. The awards program celebrates the accomplishments of the medical device manufacturers, their suppliers, and the many people behind the scenes—engineers, scientists, designers, and clinicians—who are responsible for the cutting-edge products that are saving lives; improving patient healthcare; and transforming medtech—one innovation at a time.

“Being selected as an MDEA Finalist is a testament to the skill, dedication and innovation of engineering team that developed the Towerview product in a six month period of time.” Eric Sugalski, CEO Smithwise.

Unlike other design competitions that are merely styling contests, the MDEA panel is comprised of medtech experts, including a balance of practicing doctors, nurses, and technicians alongside industrial designers, engineers, manufacturers, and human factors experts. MDEA jurors comprehensively review entries based on the following criteria: the ability of the product development team to overcome all challenges so the product meets its clinical objectives; innovative use of materials, components, and processes; user-related functions improving healthcare delivery and changing traditional medical attitudes or practices; features providing enhanced benefits to the patient and end-user in relation to clinical efficacy; manufacturing cost-effectiveness and profitability; and healthcare system benefits such as improved accessibility, efficacy, or safety, in addition to providing attention to a critical unmet clinical need.

The 2017 MDEA Juror Panel selected 45 exceptional finalists in nine medical technology product categories. Products were judged based on design and engineering innovation; function and user-related innovation; patient benefits; business benefits; and overall benefit to the healthcare system.

Winners will be announced on Tuesday, June 13, 2017 at the 2017 Medical Design Excellence Awards ceremony. MD+DI will recognize the finalists and announce the Bronze, Silver, and Gold winners in each of the nine medtech categories, as well as present the Readers’ Choice, Best-In-Show, Lifetime Achievement Awards, and more! RSVP during your MD&M East registration to reserve your ticket. Admission is FREE but donations are encouraged to benefit VentureWell’s BMEidea, a design competition for biomedical engineering university students whose winners will also be announced at the ceremony.

For the latest news, tweets, videos, and info about #MDEA17 finalists and winner follow MD+DI on Facebook, Twitter, YouTube, and

 Written by Eric Sugalski

Written by Eric Sugalski

Eric Sugalski is the founder and president of Archimedic, a contract medical device development firm with offices in Boston and Philadelphia. Sugalski has led the development of a novel pediatric life support system, cardiovascular implants, laparoscopic surgical devices, and an array of wearable diagnostics. In addition to his technical background, Eric provides companies with product development strategy that encompasses regulatory, reimbursement, and fundraising requirements. Eric obtained a B.S. in mechanical engineering from the University of Colorado Boulder and an MBA from the MIT Sloan School of Management.


The five steps discussed within this article identify what to expect, and how to respond as a team to move a well-designed device to volume production.

Originally posted on Med Device Online

Written by Jon Wenderoth, Lead Mechanical Engineer at Smithwise

Many new companies have a business model based on transitioning their product to high-volume manufacturing and distribution. Unfortunately, this is more complex than breaking out the parts from a working prototype and selecting a manufacturer. Mistakenly thinking the development is wrapped up at this point will cause schedule projections to be significantly off, and seed doubt in knowledgeable investors.

It is important to understand that these steps alone won’t fix the output from a broken development process; a house needs a solid foundation to remain standing. The entire evolution, from thoughtful design through prototypes and iteration, inherently becomes the footing for an efficient transition to manufacture. The five steps discussed within this article identify what to expect, and how to respond as a team to move a well-designed device to volume production.

1.  Prepare A Request For Quote Package

When it’s time to start shopping around for vendors, it is important to gather the necessary information into a concise Request for Quote (RFQ) package. Remember that everything is on the table at this point, so if a potential customer appears disorganized, unprepared, or generally unknowledgeable, it sends up a red flag that a project may involve significant hand-holding; prices will be adjusted accordingly. Having a complete, up-to-date database is in your best interest and will pay repeated dividends over the life of a product.

The RFQ package should start with an engineering Bill of Materials (BOM). This is the full parts list, including part descriptions, materials, proposed manufacturing processes for custom components, any secondary processes, quantities, file names, and revision tracking. For a contract manufacturer (CM), a complete BOM is a quick reference for the submitted parts that implies experience and attention to detail. If quoting at individual vendors for specific manufacturing capabilities, segment the data so they aren’t overwhelmed with extraneous information.


Above Image:  Zip-Stitch by ZSX Medical (

Vendors also will need part files to know what they are quoting.  Stay away from sending any native file formats; in addition to document reference headaches, outside parties are less likely to attempt to modify CAD data without design tree information. Instead, identify which file formats fit a vendor’s process. For instance, two-dimensional process manufacturers (stamping, die cutting, water jetting, etc.) can usually work with 3D part files, but many prefer flat pattern DXFs, as these can feed directly into their machine software. Three-dimensional process manufacturers (molding, casting, multi-axis machining, etc.) need 3D part files, like IGS or STP.

If your project is like most development efforts, time is on short supply and quoting is begun prior to design finalization. This typically is ok, as long as general size and features are included within your files. Ensure some form of revision control is used, so when it is time to hit “go,” the appropriate files can be referenced. To summarize:

  • Compile an appropriate, complete package for each vendor.
  • Use revision control (dated files, revision numbers, etc.) that can be easily referenced.
  • Send the entire package at one time. A barrage of emails to sort through is inconvenient for the recipient and increases the chance that things will be lost.
  • Special operations/secondaries can be specified in the BOM. If further granularity is required, 2D control drawings can be generated.

2. Construct A Realistic Timeline

One of the key outputs from the RFQ and vendor selection process is schedule. Formal quotes come with lead times, so be clear on what these lead times mean — when does the timer start, and what is the deliverable when it stops?

Using injection molding as an example, imagine it is May 2nd, and a vendor quoted a five-week timeframe to T1 sample parts. If a purchase order is sent today, the first parts will arrive in early June, giving just enough time for each part to be packaged and sent to representatives at the big east-coast medical design tradeshow later that month. (At this point, if you’ve done this before, you are questioning the validity of this article.)

Unfortunately, this is a common trap new developers fall into when doing the right thing and trying to project into the future. The intent is there, but the data is skewed. In this simplified example, the five weeks are for sample part molding, not including shipping time, and other steps in the process are not considered. A typical timeline for this example part might be as follows, with up to several months added on to the five weeks quoted:

  • Final file delivery
  • Moldability evaluation1-2 weeks
  • Discussion & part modification2-3 weeks
  • Final review & tool design approval1 week
  • Tool construction & T1 samples5 weeks
  • Part evaluation, testing, and file updates2-4 weeks
  • Tool grooming and texturing2-3 weeks
  • T2 samples delivered1 week

For multi-part assemblies, using varied manufacturing methods, schedules become increasingly complex. It can be helpful to fully understand all the steps in a process and work backwards from a set deliverable date. With this approach, as the project progresses, it is clear what the longest lead time items are, and which milestones need to be met, so they don’t become a gating item.

3.  Finalize The Documentation Package

After vendors are selected and the product design is finalized, the documentation process discussed in step one will need to be repeated at a more discrete level. In addition to CAD files, this should include complete engineering drawings in PDF format. If working with a CM, assembly drawings should be included, with all pertinent drawing views and instruction to enable a third party to assemble the product.

This documentation is the engineer’s chance to identify areas that need specific tolerances, with critical dimensions for functionality and inspection dimensions for the vendor to verify. In many cases, a vendor will inspect all drawing dimensions; at the least, values identified as “inspection” will highlight their importance to the physical outcome of a part.

Don’t forget to update and send your BOM with the final files in a complete package. It is critical that vendors have easy access to the most recent documentation to avoid mistakes, and it is wise to include revision numbers on individual file names that can be cross-referenced to the BOM.

4. Manage The Design For Manufacturing (DFM) Process

At this point, the vendors have been sent the information they need, but the job isn’t done yet. There should be some degree of feedback from all manufacturers, but we will continue to use injection molding as our example.

After a few weeks, the vendor will have reviewed the files and provided a moldability evaluation. If a knowledgeable engineer or reviewer has been involved in the development, there shouldn’t be any show-stoppers here. However, if the vendor discovers that a critical feature can’t be molded due to geometric constraints, there may be some late nights ahead. Luckily, the tools haven’t yet been cut and there is room to pivot. Still, a sales team pushing to be first to market won’t appreciate the compromised schedule.

Regardless, expect there to be some feedback to incorporate into the design. Maybe an internal rib is moved to allow for a more convenient gate location, or the draft added to a snap feature isn’t sufficient for appropriate shutoff. When resolving these details, keep in mind that the molder doesn’t know the design intent of your parts, and their first suggestion will likely be the easiest (but not necessarily the correct) solution.

To that end, communication, especially with overseas vendors, can be painful. A phone call to discuss changes directly is often the most productive way of handling this, but this isn’t always possible. Discussion often reverts to “Powerpoint engineering,” where issues are captured and suggestions given within a slide deck. For these situations, we suggest the following:

  • Be clear and concise, and don’t forget there may be a language barrier. Label and date all files, as well as all comments.
  • Pictures, arrows, & colors: The “1000 words” philosophy applies here, too, and simple sketches often can suffice, rather than investing time in an exploratory CAD change.
  • Consolidate. If schedule permits, gather all the DFM feedback together to review instead of assessing it piecemeal. This is more efficient, and makes it easier to track responses. Provide 2D and 3D file updates in the same way (don’t forget to update your BOM with revisions).

Besides design issues, the vendor will be looking for approval of process-specific features, such as gate and ejector pin locations in a mold. Ensure there is an understanding of what approvals are needed and how they are provided; it is frustrating to believe a vendor is spooling up when they are actually waiting for a well-defined approval.

5. Inspect, Evaluate, And Adjust

Regardless of what anyone says, no custom manufacturing parts are going to be perfect immediately — that takes additional work. For this reason, a good development timeline should always build in a period to assemble and evaluate the form, fit, and function of a design. This is the time to find and correct any issues that arose during manufacturing. If schedule is very tight, it is always helpful to have a representative on site for rapid evaluation. Remember that the vendor will need approval prior to any volume orders (or final tool details, like texture application on molded plastic), and it becomes more costly for budget and schedule if changes are requested later on.

  • Ask for inspection reports from vendors. For production parts, these should be available and provide direct measurement of critical dimensions identified on engineering drawings.
  • Get all parts in-hand (preferably multiple sets). This includes electronics, fasteners, samples from each cavity in family tooling, custom cables, everything. Long lead time parts need to be sourced appropriately so they are all available.
  • Assemble and test: Leverage sample parts and inspection reports to assess functionality.

Testing may start as fit checks — ensuring a sheet metal bend is at the correct angle or fastener holes align — and then may progress to a functional assessment. Eliminate variables where possible to focus on the area in question, and don’t be afraid to do some destructive analysis if supplies allow. This is a valid justification for allocating multiple parts to testing; if a problem can’t be seen or understood, it may not be fixed appropriately. Regardless of how many are available, never be cavalier with the approach to sample parts. Identify a plan, and then inspect, measure, and record until all learning opportunities from a part have been exhausted.

Ensure all members of the design team are aligned before implementing any modifications. As with earlier updates, communicate changes in a clear and concise manner, as the cost and risk of change (and therefore mistakes) increase exponentially after vendors have fully tooled up for high-volume production.

These steps should provide some high-level insight into the effort required to transfer a product to manufacturing. While this is by no means a complete list of the challenges involved, hopefully it can equip hardware developers with enough knowledge to avoid the common headaches and get their product into production.


Many factors need to be weighed when implementing 3D printing within an evaluation, clinical, or production device setting. Because 3D printing is as easy as a click of a mouse, additional responsibility falls on developers to properly design, assess risk, or account for quality.

Originally posted on Med Device Online

Written by David Schoon, Director of Mechanical Engineering at Smithwise’s Newton office

Medical device developers use 3D printers religiously, to develop prototypes and to iterate designs, in order to rapidly learn and improve upon a product idea. Traditionally, these tools are used during the early stages of development. After prototyping is complete and the behaviors of a product or part design are understood and tested, the design is manufactured by a more economically viable method, such as injection molding, extrusion, casting, or metal stamping, amongst others.

However, there are circumstances under which 3D printing is a perfectly reasonable production method. These can be instances where production volumes are low, product margins are high, or there is a need to uniquely customize each design. While these may not be common scenarios for, say, a smartphone or a coffee mug, these factors can translate well to certain types of medical devices. Still, device makers need to be aware that there are precautions and processes to consider as a result of the unique risks associated with 3D printing manufacturing.

It’s likely that many developers with 3D printing exposure or experience already are aware of some of the common traits and risk associated with the process — FDM hole sizes that are significantly undersized, in accordance with claimed machine tolerances; photopolymerization materials that creep and dimensionally change over time when exposed to loading conditions; and DMLS parts that are saggy, droopy, or out-of-specification from the outset, due to poor build orientation and support material layout. However, these examples of common difficulties merely scratch the surface of what needs to be understood, from a risk perspective, when implementing 3D printing into a medical device design.

One difficulty that developers have encountered to this point is the particular dichotomy that exists between 3D printing — which can be associated with fast and loose development — and the regulatory standards and rigor imposed by FDA upon devices developed within a quality system. The ease with which one is able to generate parts through 3D printing inherently introduces risk.

In May 2016, the FDA released a draft guidance titled Technical Considerations for Additive Manufactured Devices. Any manufacturer or organization considering 3D-printed components during the development of a medical device should refer to this document. The guidance goes into detail regarding risk and other considerations related to 3D printing, as well as how to employ 3D printing within device development. Some of the risks and considerations discussed include:

  • Development drawings with critical dimensions can be overlooked, and/or parts can be printed without files being saved and documented properly within a Device Master Record.
  • Material behavior can vary significantly from datasheet specifications due to environmental conditions, build orientations, print machine variables, and other unanticipated factors.
  • Software workflow, material controls, and post-processing are important considerations to achieve repeatable and quality parts, and proper documentation and manufacturing flow charts should be generated to capture these.
  • Compared to traditional manufacturing techniques, there are feature size limits, dimensional variation based on technique, environmental conditions factors, and many factors affected by build orientations.
  • Material behavior, with respect to cleaning and sterilization, can differ from that of parts manufactured using traditional methods.

The FDA has presented workflow guidance detailing what needs to be controlled for a successful device submission when utilizing 3D printed components. Developers should plan to include proper design documentation, software workflow, material controls, post-processing controls, and testing considerations.


The guidance should be consulted for finer granularity regarding each of these quality components. Additionally, manufacturers should heed these commonly overlooked considerations relevant to 3D-printed part production:

  • It is recommended that performance verification come from testing finished parts, or coupons that are produced using an identical process.
  • If possible, device files should be maintained and archived to an Additive Manufacturing File format, as described in ISO/AST 52915.
  • Workflows should be established to include part placement, layer thicknesses, printer accuracy, print speed, and the build layout within a print envelope.
  • Printer maintenance procedures should exist along with workflows to establish consistency between builds. These should be maintained within the Device Master Records (DMR).
  • All material information should be documented, including any process aids, like material support and crosslinkers.
  • Workflows should exist for any post-processing steps, such as the removal of support material. Depending on the use case, testing may be necessary to understand the effect this action may have on the finished part.
  • Process validation should be established. This can include monitoring and documenting the 3D printer’s environmental conditions to validate the machine process.

The FDA guidance is intended to induce a thoughtful approach that will yield a successful regulatory submission, and is catered towards the inclusion of 3D printed components within an end product. For a low-volume FDA evaluation or a clinical study, there may be economic factors that make 3D printing a desirable approach for component and prototyping purposes.  When weighing this approach, it should be understood that the burden is on the developer to establish sufficient rationale to claim equivalency between a prototype and a high-volume production method.

In certain instances, equivalencies can be rationalized fairly simply — for example, if a 3D-printed housing was used for a laparoscopic disposable within a human factors validation study.  However, if said device contained electrical or antenna components and was being used within a clinical trial or certification testing, there may be good reason to prototype with a production material.  Material differences could influence the EMC or antenna performance, and having to retest to IEC 60601 conformity could be costly and time-consuming.

In summary, many factors need to be weighed when implementing 3D printing within an evaluation, clinical, or production device setting. Because 3D printing is as easy as a click of a mouse, additional responsibility falls on developers to properly design, assess risk, or account for quality. As the FDA has only recently began to weigh in on 3D printing, developers and manufacturers would be wise to use pre-submissions when clarifications are needed.